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Demands for Robotic Vision Jul. 27t 2016

Robots are designed and built to complement human abilities.
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Robotic Vision and Related Topics
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Look-then-move
Visual sensing and manipulation are combined directly
\L in an open-loop fashion.

Initialization

Vision-based State The accuracy of the operation, in such a configuration,
Estimation

depends directly on the accuracy of the hardware, such
\L as the visual sensors, the manipulator and the controller.

Robot Control
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Visual Servoing e vene

Visual Servoing

uses a visual-feedback control loop to increase

\l/ the overall accuracy of the system - a principal
concern in any application.

Initialization

Vision-based State
Estimation <= Visual servoing approaches broaden the

application domain of robotic manipulation, as
\l/ they do not need a priori knowledge of the
workspace, that is, they are competent of visual
control in an unmodeled
environment.

Robot Control ————

Sensor Signals

| v Control | , |
Tasks—»@)—» Controller » Robot Process ——Outputs—»
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Vision-based State Estimation Jul. 27t 2016

State estimation, in the sensor space, mainly concerns the
camera configuration and the image processing algorithms.
Various visual information is extracted, such as color, pose, or
features of objects, to describe the state of the target object.

Visual
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Visual data 2D Image P point video
Image
cloud

Processor
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Representation

Random variable x denotes a quantity that is uncertain. This information is
captured by the probability distribution B.(x) of the random variable. A
random variable may be discrete or continuous.
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Probability Model

Noise Many-to-one mapping
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Fitting Probability Models

taking visual data x and use them to infer the state of the world 6
fitting probability models to data - learning

Maximum Likelihood

the maximum likelihood (ML) method finds the set of parameters 8 under which the data
{x;}i_ are most likely.

I
0 = mBaX[Pr(xl . x70)] = max HPr(xl-lé’)
i=1

Maximum a posteriori

maximum a posteriori estimation maximizes the posterior probability [B.(x; ... x;|0)]of the
parameters

= = Imax

6 = meax[PT(H | X1 .. xp)] = max [Pr(xl ...x,IH)Pr(Q)] ;

[H{=1 P, (x;16)B-(0)
P.(xq..x;)

B.(xq...x;7)

I
6 = max nPr(inH)Pr(H)
i=1
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Fitting Probability Models

Bayesian approach
i=1 P (x:|0)P.(6)

P.(xq..xp)
Evaluating the predictive distribution is more difficult for the Bayesian case
since we have not estimated a single model but have instead found a
probability distribution over possible models. Hence, we calculate

P.(x*|xq..x;) = JPr(x*l 0)P.(0]| x4 ...x;)d6

General Form

The predictive density calculations for the Bayesian, MAP and ML cases can
be unified as

P.(x*| x4 . X)) = jp,,(x*| 0)5|0 — 6]do = P.(x*|9)
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Machine Learning Solution

model to mathematically relate the visual data x and the world state w. The model

specifies a family of possible relationships between x and w and the particular relationship
is determined by the model parameters 6.

Visual data x Model () World state w
Discriminative model _ Regression model
P.(w|x) s to estimate a continuous quantity from
— model the n; continuous data. e.g. predicting the joint
contingency of the d angles from an image of the human body.

world state on the data

-

Generative model = Classification model
B.(x|w) 3 to predict a discrete quantity from continuous
— model the a data. e.g. assigning a label to a region of the
contingency of the data image to indicate whether or not a face is
on the world state v | present.

’ x
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model to mathematically relate the visual data x and the world state w. The model
specifies a family of possible relationships between x and w and the particular relationship

is determined by the model parameters 6.

Visual data x

learning algorithm to
allow fitting the
parameters Qusing
paired training examples
{x;, w;} where we know
both the measurements

and the underlying state.

Introduction

Learning

Model ()

Inference

Algorithm

Modeling

Algorithm

Solution

World state w

inference algorithm to
take a new observation
x and uses the model to
return the posterior
P.(w|x) over the world
state w.

Summary



. ) Dr. Ying Wang
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Visual kinematic
control

Vision-based Stat Robot
ision-base ate E

Estimation Control , Visual dynamic

A control

Vision-motor

model

Estimated - Know a priori
the model estimation can be the forward or inverse kinematics of
conducted on- or off-line. The the robot (robot Jacobian) is
estimated image Jacobian relates the available to deduce the differential
joint velocity directly to image space changes between the joint and
velocities, which can be estimated Cartesian space. e.g. PBVS, IBVS or 2
from previous measurements. 1/2D visual servoing
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Example: Object Following

©VisP
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Solution Overview

Example: Object Following

Task : controlling the robot to
follow the target
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Perspective Projection

Camera frame Image frame Projection line
/) —
' Y /
. ,f--"‘" | P
-7 |
X /,..;-""' X J
-
/ / _
0 > -
r 4 c . .
f\._ — -1t ‘ Projection
\ x'
X
Cameracenter Ima ' ' "F-E-
ge center 'DPtICElEKIE F .F- — F,
Y
fz
\“)

Introduction Modeling Solution Summary



Image Formation

Perspective Projection
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Example: Object Following

Task : controlling the robot to Initialization

follow the target ,
Image formation
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Image Processing Jul. 27 2016
ul. 27t

Denoising
1 2242
Gaussian Filter G(x,y) = 5€ 207
2o
0.2 - 114 7] 4|1
4
7
4

Introduction Modeling Solution Summary



Solution Overview Dr. Ying Wang
Jul. 27t 2016

Example: Object Following
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Local Descriptor

By including the surrounding neighbors, the underlying sampled surface
geometry can be inferred and captured in the feature formulation,
which contributes to solving the ambiguity comparison problem. Ideally,
the resultant features would be very similar (with respect to some
metric) for points residing on the same or similar surfaces, and different
for points found on different surfaces, as shown in the figure below.
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3D Feature

3D features are representations at a certain 3D point or position
in space, which describe geometrical patterns based on the
information available around the point. The data space selected
around the query point is usually referred as the k-
neighborhood.
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Local Descriptor - K-neighborhood
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Matching — Iterative Closest Point
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Solution Model of Machine learning

Model
World state w is continuous ( 3D pose ) -> Regression model
Taking a generative approach, the likelihoods are described as

P.(x|w=k)

Learning algorithm

the parameters from training data pairs
{w;, x;}_, where the pixels have been
manually labeled. The prior parameter

is learned from the world states {w;}i_;.

Inference algorithm aims to calculate
the 3D pose of the object in the video
stream.
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Example: Object Following
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Solution Model of Machine learning
Visual Servoing

Vision-motor model: PBVS & IBVS
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2 % D Visual Servoing
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Pseudo codes - Initialization

1
2
3
4,
2.
B
7
8
9

10.
11.
12.
13.

set projModel € perspectiveProjwithDistortion

set robot ¢ projModel
set point{4] //3D points
set dotf4]

compute cMo

set P < (0,0, 0)

set cdMo

compute pd ¢ cdMo, P
compute Zd from P
compute p € cMo, P
compute 7 from P
compute depth, tu

set task.addFeature < (p, pd, depth, tu)

Introduction Modeling Solution
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Visual Servoing

Pseudo codes — Control design

set lamda < (2.5, 0.2, 40)

set task.setServo < EYEINHAND L cVe ele

set task.set_cVe(cVe) & robot.set cVe(cVe)

set task.set_elefele) & robot.set_elefele)

set robot.setRobotState < STATE _VELOCITY CONTROL

N e
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Visual Servoing

Pseudo codes — Control loop

while true
for all feature points
get dotfil.x
get dotfil.y
compute & update cMo
Compute & update p
Compute & update tu
Compute & update depth
update task.set cVe(cVe) < robot.set _cVe(cVe)
update task.set _elefele) < robot.set_ele(ele)

compute v

AT I o

P
T

set robot.setVelocity
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Object Following
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* Drivers
— 2D/3D range finders
— RGB-Depth cameras
— monocular and stereo cameras

— Tools (pcl, visp, opencv with ros)

— Support packages (calibration, recognition, image conversion, visualizer)
— Messages

— Topics

— Services

— parameters

e Tutorials & support
www.roswiki.com/
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Thank you for your attention!

Vielen Dank flir lhre Aufmerksamkeit!
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