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Look-then-move
Visual sensing and manipulation are combined directly 
in an open-loop fashion.

The accuracy of the operation, in such a configuration,
depends directly on the accuracy of the hardware, such 
as the visual sensors, the manipulator and the controller. 

Initialization

Vision-based State 
Estimation

Robot Control
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Initialization

Vision-based State 
Estimation

Robot Control

Visual servoing approaches broaden the 
application domain of robotic manipulation, as 
they do not need a priori knowledge of the 
workspace, that is, they are competent of visual 
control in an unmodeled
environment.

Visual Servoing
uses a visual-feedback control loop to increase 
the overall accuracy of the system - a principal 
concern in any application. 
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State estimation, in the sensor space, mainly concerns the 
camera configuration and the image processing algorithms. 
Various visual information is extracted, such as color, pose, or 
features of objects, to describe the state of the target object. 
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Random variable x denotes a quantity that is uncertain. This information is 
captured by the probability distribution 𝑃𝑟 𝑥 of the random variable. A 
random variable may be discrete or continuous. 
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Maximum Likelihood 

the maximum likelihood (ML) method finds the set of parameters ෠𝜃 under which the data 

{𝑥𝑖}𝑖=1
𝐼 are most likely. 

෠𝜃 = max
𝜃

𝑃𝑟 𝑥1…𝑥𝐼 𝜃 = max
𝜃

ෑ

𝑖=1

𝐼

𝑃𝑟 𝑥𝑖 𝜃

Maximum a posteriori

maximum a posteriori estimation maximizes the posterior probability 𝑃𝑟 𝑥1…𝑥𝐼 𝜃 of the 
parameters

෠𝜃 = max
𝜃

𝑃𝑟 𝜃 | 𝑥1…𝑥𝐼 = max
𝜃

𝑃𝑟 𝑥1…𝑥𝐼 𝜃 𝑃𝑟 𝜃

𝑃𝑟 𝑥1…𝑥𝐼
= = max

𝜃

ς𝑖=1
𝐼 𝑃𝑟 𝑥𝑖 𝜃 𝑃𝑟 𝜃

𝑃𝑟 𝑥1…𝑥𝐼

෠𝜃 = max
𝜃

ෑ

𝑖=1

𝐼

𝑃𝑟 𝑥𝑖 𝜃 𝑃𝑟(𝜃)
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taking visual data x and use them to infer the state of the world 𝜃

fitting probability models to data - learning



Bayesian approach

𝑃𝑟 𝜃 | 𝑥1…𝑥𝐼 =
ς𝑖=1
𝐼 𝑃𝑟 𝑥𝑖 𝜃 𝑃𝑟 𝜃

𝑃𝑟 𝑥1…𝑥𝐼

Evaluating the predictive distribution is more difficult for the Bayesian case 
since we have not estimated a single model but have instead found a 
probability distribution over possible models. Hence, we calculate

𝑃𝑟 𝑥∗ 𝑥1…𝑥𝐼) = න𝑃𝑟 𝑥∗ 𝜃)P𝑟 𝜃 𝑥1…𝑥𝐼)𝑑𝜃

General Form

The predictive density calculations for the Bayesian, MAP and ML cases can 
be unified as

𝑃𝑟 𝑥∗ 𝑥1…𝑥𝐼) = න𝑃𝑟 𝑥∗ 𝜃)𝛿 𝜃 − መ𝜃 𝑑𝜃 = 𝑃𝑟(x
∗| መ𝜃)
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Discriminative model  
𝑃𝑟 𝑤 𝑥
– model the 
contingency of the 
world state on the data 

Model (𝜽)

Regression model
to estimate a continuous quantity from 
continuous data. e.g. predicting the joint 
angles from an image of the human body. 

Classification model
to predict a discrete quantity from continuous 
data. e.g. assigning a label to a region of the 
image to indicate whether or not a face is 
present. 

Visual data x World state w

model to mathematically relate the visual data x and the world state w. The model 
specifies a family of possible relationships between x and w and the particular relationship 
is determined by the model parameters  𝜃.
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State Estimation  
Machine Learning Solution

Generative model
𝑃𝑟 𝑥 𝑤
– model the 
contingency of the data 
on the world state



learning algorithm to 
allow fitting the 
parameters 𝜃using
paired training examples 
𝑥𝑖 , 𝑤𝑖 where we know 

both the measurements
and the underlying state.

Visual data x World state wModel (𝜽)

Inference
Algorithm

Learning 
Algorithm

inference algorithm to 
take a new observation 
x and uses the model to 
return the posterior 
𝑃𝑟 𝑤 𝑥 over the world 
state 𝑤. 

model to mathematically relate the visual data x and the world state w. The model 
specifies a family of possible relationships between x and w and the particular relationship 
is determined by the model parameters  𝜃.
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Vision-Motor Model 

the forward or inverse kinematics of 
the robot (robot Jacobian) is 
available to deduce the differential 
changes between the joint and 
Cartesian space. e.g. PBVS, IBVS or 2 
1/2D visual servoing

Know a priori

the model estimation can be 
conducted on- or off-line. The 
estimated image Jacobian relates the 
joint velocity directly to image space 
velocities, which can be estimated 
from previous measurements. 

Estimated
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By including the surrounding neighbors, the underlying sampled surface 
geometry can be inferred and captured in the feature formulation, 
which contributes to solving the ambiguity comparison problem. Ideally, 
the resultant features would be very similar (with respect to some 
metric) for points residing on the same or similar surfaces, and different 
for points found on different surfaces, as shown in the figure below.
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Tracking
Local Descriptor

T = t1 T = t2
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3D features are representations at a certain 3D point or position 
in space, which describe geometrical patterns based on the 
information available around the point. The data space selected 
around the query point is usually referred as the k-
neighborhood.
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Tracking
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Tracking
Local Descriptor - K-neighborhood
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Model 
World state 𝑤 is continuous ( 3D pose )  ->  Regression model
Taking a generative approach, the likelihoods are described as 

𝑃𝑟 𝑥 𝜔 = 𝑘)

Inference algorithm aims to calculate 
the 3D pose of the object in the video 
stream.

Learning algorithm
the parameters from training data pairs 

𝑤𝑖 , 𝑥𝑖 𝑖=1
𝐼 where the pixels have been 

manually labeled. The prior parameter 

is learned from the world states 𝑤𝑖 𝑖=1
𝐼 .
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Vision-motor model: PBVS & IBVS
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• Drivers
– 2D/3D range finders 
– RGB-Depth cameras
– monocular and stereo cameras

• API
– Tools (pcl, visp, opencv with ros)
– Support packages (calibration, recognition, image conversion, visualizer)
– Messages
– Topics
– Services
– parameters

• Tutorials & support
www.roswiki.com/
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